Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Genet Dev ; 83: 102112, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37703635

RESUMO

Nonshivering thermogenesis by brown adipose tissue (BAT) is an adaptive mechanism for maintaining body temperature in cold environments. BAT is critical in rodents and human infants and has substantial influence on adult human metabolism. Stimulating BAT therapeutically is also being investigated as a strategy against metabolic diseases because of its ability to function as a catabolic sink. Thus, understanding how brown adipocytes and the related brite/beige adipocytes use nutrients to fuel their demanding metabolism has both basic and translational implications. Recent advances in mass spectrometry and isotope tracing are improving the ability to study metabolic flux in vivo. Here, we review how such strategies are advancing our understanding of adipocyte thermogenesis and conclude with key future questions.


Assuntos
Tecido Adiposo Marrom , Obesidade , Adulto , Humanos , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Adipócitos Marrons/metabolismo , Termogênese/genética
2.
Nat Metab ; 5(7): 1204-1220, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37337122

RESUMO

Adaptive thermogenesis by brown adipose tissue (BAT) dissipates calories as heat, making it an attractive anti-obesity target. Yet how BAT contributes to circulating metabolite exchange remains unclear. Here, we quantified metabolite exchange in BAT and skeletal muscle by arteriovenous metabolomics during cold exposure in fed male mice. This identified unexpected metabolites consumed, released and shared between organs. Quantitative analysis of tissue fluxes showed that glucose and lactate provide ~85% of carbon for adaptive thermogenesis and that cold and CL316,243 trigger markedly divergent fuel utilization profiles. In cold adaptation, BAT also dramatically increases nitrogen uptake by net consuming amino acids, except glutamine. Isotope tracing and functional studies suggest glutamine catabolism concurrent with synthesis via glutamine synthetase, which avoids ammonia buildup and boosts fuel oxidation. These data underscore the ability of BAT to function as a glucose and amino acid sink and provide a quantitative and comprehensive landscape of BAT fuel utilization to guide translational studies.


Assuntos
Tecido Adiposo Marrom , Glutamina , Masculino , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Glutamina/metabolismo , Glucose/metabolismo , Termogênese/fisiologia , Músculo Esquelético/metabolismo
3.
J Biol Chem ; 298(10): 102379, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35973513

RESUMO

Mechanistic target of rapamycin (mTOR) complex 2 (mTORC2) regulates metabolism, cell proliferation, and cell survival. mTORC2 activity is stimulated by growth factors, and it phosphorylates the hydrophobic motif site of the AGC kinases AKT, SGK, and PKC. However, the proteins that interact with mTORC2 to control its activity and localization remain poorly defined. To identify mTORC2-interacting proteins in living cells, we tagged endogenous RICTOR, an essential mTORC2 subunit, with the modified BirA biotin ligase BioID2 and performed live-cell proximity labeling. We identified 215 RICTOR-proximal proteins, including proteins with known mTORC2 pathway interactions, and 135 proteins (63%) not previously linked to mTORC2 signaling, including nuclear and cytoplasmic proteins. Our imaging and cell fractionation experiments suggest nearly 30% of RICTOR is in the nucleus, hinting at potential nuclear functions. We also identified 29 interactors containing RICTOR-dependent, insulin-stimulated phosphorylation sites, thus providing insight into mTORC2-dependent insulin signaling dynamics. Finally, we identify the endogenous ADP ribosylation factor 1 (ARF1) GTPase as an mTORC2-interacting protein. Through gain-of-function and loss-of-function studies, we provide functional evidence that ARF1 may negatively regulate mTORC2. In summary, we present a new method of studying endogenous mTORC2, a resource of RICTOR/mTORC2 protein interactions in living cells, and a potential mechanism of mTORC2 regulation by the ARF1 GTPase.


Assuntos
Fator 1 de Ribosilação do ADP , Mapas de Interação de Proteínas , Proteína Companheira de mTOR Insensível à Rapamicina , Serina-Treonina Quinases TOR , Humanos , Fator 1 de Ribosilação do ADP/metabolismo , Insulina/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Mapeamento de Interação de Proteínas/métodos
4.
Methods Mol Biol ; 2448: 119-130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35167094

RESUMO

Brown adipose tissue (BAT) demonstrates extraordinary metabolic capacity. Previous research using conventional radio tracers reveals that BAT can act as a sink for a diverse menu of nutrients; still, the question of how BAT utilizes these nutrients remains unclear. Recent advances in mass spectrometry (MS) coupled to stable isotope tracing methods have greatly improved our understanding of metabolism in biology. Here, we have developed a BAT-tailored metabolomics and stable isotope tracing protocol using, as an example, the universally labeled 13C-glucose, a key nutrient heavily utilized by BAT. This method enables metabolic roadmaps to be drawn and pathway fluxes to be inferred for each nutrient tracer within BAT and its application could uncover new metabolic pathways not previously appreciated for BAT physiology.


Assuntos
Tecido Adiposo Marrom , Metabolômica , Tecido Adiposo Marrom/metabolismo , Isótopos de Carbono/metabolismo , Espectrometria de Massas , Redes e Vias Metabólicas
5.
Cell Rep ; 36(4): 109459, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34320357

RESUMO

Active brown adipose tissue (BAT) consumes copious amounts of glucose, yet how glucose metabolism supports thermogenesis is unclear. By combining transcriptomics, metabolomics, and stable isotope tracing in vivo, we systematically analyze BAT glucose utilization in mice during acute and chronic cold exposure. Metabolite profiling reveals extensive temperature-dependent changes in the BAT metabolome and transcriptome upon cold adaptation, discovering unexpected metabolite markers of thermogenesis, including increased N-acetyl-amino acid production. Time-course stable isotope tracing further reveals rapid incorporation of glucose carbons into glycolysis and TCA cycle, as well as several auxiliary pathways, including NADPH, nucleotide, and phospholipid synthesis pathways. Gene expression differences inconsistently predict glucose fluxes, indicating that posttranscriptional mechanisms also govern glucose utilization. Surprisingly, BAT swiftly generates fatty acids and acyl-carnitines from glucose, suggesting that lipids are rapidly synthesized and immediately oxidized. These data reveal versatility in BAT glucose utilization, highlighting the value of an integrative-omics approach to understanding organ metabolism.


Assuntos
Tecido Adiposo Marrom/metabolismo , Glucose/metabolismo , Marcação por Isótopo , Aminoácidos/metabolismo , Animais , Ciclo do Ácido Cítrico/genética , Temperatura Baixa , Ácidos Graxos/metabolismo , Glicólise/genética , Metaboloma/genética , Camundongos Endogâmicos C57BL , Oxirredução , Fosfatidilgliceróis/metabolismo , Transcriptoma/genética
6.
Cell Rep ; 33(1): 108223, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33027655

RESUMO

Overweight and obesity are associated with type 2 diabetes, non-alcoholic fatty liver disease, cardiovascular disease and cancer, but all fat is not equal, as storing excess lipid in subcutaneous white adipose tissue (SWAT) is more metabolically favorable than in visceral fat. Here, we uncover a critical role for mTORC2 in setting SWAT lipid handling capacity. We find that subcutaneous white preadipocytes differentiating without the essential mTORC2 subunit Rictor upregulate mature adipocyte markers but develop a striking lipid storage defect resulting in smaller adipocytes, reduced tissue size, lipid re-distribution to visceral and brown fat, and sex-distinct effects on systemic metabolic fitness. Mechanistically, mTORC2 promotes transcriptional upregulation of select lipid metabolism genes controlled by PPARγ and ChREBP, including genes that control lipid uptake, synthesis, and degradation pathways as well as Akt2, which encodes a major mTORC2 substrate and insulin effector. Further exploring this pathway may uncover new strategies to improve insulin sensitivity.


Assuntos
Tecido Adiposo Branco/fisiopatologia , Metabolismo dos Lipídeos/fisiologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Obesidade/fisiopatologia , Gordura Subcutânea/fisiopatologia , Animais , Humanos , Camundongos
7.
FASEB J ; 34(8): 10574-10589, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32568455

RESUMO

Cancer cells require extensive metabolic reprograming in order to provide the bioenergetics and macromolecular precursors needed to sustain a malignant phenotype. Mutant KRAS is a driver oncogene that is well-known for its ability to regulate the ERK and PI3K signaling pathways. However, it is now appreciated that KRAS can promote the tumor growth via upregulation of anabolic metabolism. We recently reported that oncogenic KRAS promotes a gene expression program of de novo lipogenesis in non-small cell lung cancer (NSCLC). To define the mechanism(s) responsible, we focused on the lipogenic transcription factor SREBP1. We observed that KRAS increases SREBP1 expression and genetic knockdown of SREBP1 significantly inhibited the cell proliferation of mutant KRAS-expressing cells. Unexpectedly, lipogenesis was not significantly altered in cells subject to SREBP1 knockdown. Carbon tracing metabolic studies showed a significant decrease in oxidative phosphorylation and RNA-seq data revealed a significant decrease in mitochondrial encoded subunits of the electron transport chain (ETC). Taken together, these data support a novel role, distinct from lipogenesis, of SREBP1 on mitochondrial function in mutant KRAS NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Mitocôndrias/metabolismo , Oncogenes/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Lipogênese/genética , Neoplasias Pulmonares/genética , Mutação/genética , Fosforilação Oxidativa , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/genética , Regulação para Cima/genética
8.
Cancers (Basel) ; 11(10)2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31581742

RESUMO

Epithelial mesenchymal transition is a common mechanism leading to metastatic dissemination and cancer progression. In an effort to better understand this process we found an intersection of Nrf2/NLE2F2 (Nrf2), epithelial mesenchymal transition (EMT), and metabolic alterations using multiple in vitro and in vivo approaches. Nrf2 is a key transcription factor controlling the expression of redox regulators to establish cellular redox homeostasis. Nrf2 has been shown to exert both cancer inhibitory and stimulatory activities. Using multiple isogenic non-small cell lung cancer (NSCLC) cell lines, we observed a reduction of Nrf2 protein and activity in a prometastatic mesenchymal cell state and increased reactive oxygen species. Knockdown of Nrf2 promoted a mesenchymal phenotype and reduced glycolytic, TCA cycle and lipogenic output from both glucose and glutamine in the isogenic cell models; while overexpression of Nrf2 promoted a more epithelial phenotype and metabolic reactivation. In both Nrf2 knockout mice and in NSCLC patient samples, Nrf2low was co-correlated with markedly decreased expression of glycolytic, lipogenic, and mesenchymal RNAs. Conversely, Nrf2high was associated with partial mesenchymal epithelial transition and increased expression of metabolic RNAs. The impact of Nrf2 on epithelial and mesenchymal cancer cell states and metabolic output provide an additional context to Nrf2 function in cancer initiation and progression, with implications for therapeutic inhibition of Nrf2 in cancer treatment.

9.
Cancer Metab ; 7: 8, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31388420

RESUMO

BACKGROUND: Metabolic reprogramming is a key feature of malignant cells. While glucose is one of the primary substrates for malignant cells, cancer cells also display a remarkable metabolic flexibility. Depending on nutrient availability and requirements, cancer cells will utilize alternative fuel sources to maintain the TCA cycle for bioenergetic and biosynthetic requirements. Lactate was typically viewed as a passive byproduct of cancer cells. However, studies now show that lactate is an important substrate for the TCA cycle in breast, lung, and pancreatic cancer. METHODS: Metabolic analysis of colorectal cancer (CRC) cells was performed using a combination of bioenergetic analysis and 13C stable isotope tracing. RESULTS: We show here that CRC cells use lactate to fuel the TCA cycle and promote growth especially under nutrient-deprived conditions. This was mediated in part by maintaining cellular bioenergetics. Therefore targeting the ability of cancer cells to utilize lactate via the TCA cycle would have a significant therapeutic benefit. Phosphoenolpyruvate carboxykinase (PEPCK) is an important cataplerotic enzyme that promotes TCA cycle activity in CRC cells. Treatment of CRC cells with low micromolar doses of a PEPCK inhibitor (PEPCKi) developed for diabetes decreased cell proliferation and utilization of lactate by the TCA cycle in vitro and in vivo. Mechanistically, we observed that the PEPCKi increased nutrient stress as determined by decreased cellular bioenergetics including decreased respiration, ATP levels, and increased AMPK activation. 13C stable isotope tracing showed that the PEPCKi decreased the incorporation of lactate into the TCA cycle. CONCLUSIONS: These studies highlight lactate as an important substrate for CRC and the use of PEPCKi as a therapeutic approach to target lactate utilization in CRC cells.

10.
FASEB J ; : fj201800204, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29906244

RESUMO

Oncogenic Kras mutations are one of the most common alterations in non-small cell lung cancer and are associated with poor response to treatment and reduced survival. Driver oncogenes, such as Kras are now appreciated for their ability to promote tumor growth via up-regulation of anabolic pathways. Therefore, we wanted to identify metabolic vulnerabilities in Kras-mutant lung cancer. Using the Kras LSL-G12D lung cancer model, we show that mutant Kras drives a lipogenic gene-expression program. Stable-isotope analysis reveals that mutant Kras promotes de novo fatty acid synthesis in vitro and in vivo. The importance of fatty acid synthesis in Kras-induced tumorigenesis was evident by decreased tumor formation in Kras LSL-G12D mice after treatment with a fatty acid synthesis inhibitor. Importantly, with gain and loss of function models of mutant Kras, we demonstrate that mutant Kras potentiates the growth inhibitory effects of several fatty acid synthesis inhibitors. These studies highlight the potential to target mutant Kras tumors by taking advantage of the lipogenic phenotype induced by mutant Kras.-Singh, A., Ruiz, C., Bhalla, K., Haley, J. A., Li, Q. K., Acquaah-Mensah, G., Montal, E., Sudini, K. R., Skoulidis, F., Wistuba, I. I., Papadimitrakopoulou, V., Heymach, J. V., Boros, L. G., Gabrielson, E., Carretero, J., Wong, K.-k., Haley, J. D., Biswal, S., Girnun, G. D. De novo lipogenesis represents a therapeutic target in mutant Kras non-small cell lung cancer.

11.
Front Oncol ; 4: 344, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25538889

RESUMO

BACKGROUND: The capacity of cancer cells to undergo epithelial mesenchymal trans-differentiation has been implicated as a factor driving metastasis, through the acquisition of enhanced migratory/invasive cell programs and the engagement of anti-apoptotic mechanisms promoting drug and radiation resistance. Our aim was to define molecular signaling changes associated with mesenchymal trans-differentiation in two KRas mutant NSCLC models. We focused on central transcription and epigenetic regulators predicted to be important for mesenchymal cell survival. EXPERIMENTAL DESIGN: We have modeled trans-differentiation and cancer stemness in inducible isogenic mutant-KRas H358 and A549 non-small cell lung cell backgrounds. As expected, our models show mesenchymal-like tumor cells acquire novel mechanisms of cellular signaling not apparent in their epithelial counterparts. We employed large-scale quantitative phosphoproteomic, proteomic, protein-protein interaction, RNA-Seq, and network function prediction approaches to dissect the molecular events associated with the establishment and maintenance of the mesenchymal state. RESULTS: Gene-set enrichment and pathway prediction indicated BMI1, KDM5B, RUNX2, MYC/MAX, NFκB, LEF1, and HIF1 target networks were significantly enriched in the trans-differentiation of H358 and A549 NSCLC models. Physical overlaps between multiple networks implicate NR4A1 as an overlapping control between TCF and NFκB pathways. Enrichment correlations also indicated marked decrease in cell cycling, which occurred early in the EMT process. RNA abundance time course studies also indicated early expression of epigenetic and chromatin regulators within 8-24 h, including CITED4, RUNX3, CMBX1, and SIRT4. CONCLUSION: Multiple transcription and epigenetic pathways where altered between epithelial and mesenchymal tumor cell states, notably the polycomb repressive complex-1, HP1γ, and BAF/Swi-Snf. Network analysis suggests redundancy in the activation and inhibition of pathway regulators, notably factors controlling epithelial cell state. Through large-scale transcriptional and epigenetic cell reprograming, mesenchymal trans-differentiation can promote diversification of signaling networks potentially important in resistance to cancer therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...